Generalized Fuchsian groups and the p-reduction theory of elements in Hurwitz spaces

Thomas Weigel, Università di Milano-Bicocca

May 8, 2006

A. Hurwitz, 1859-1919

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

$\S1$ Hurwitz groups

Definition. • A Hurwitz group $H(\underline{m})$ (of signature \underline{m}) is a group with presentation

 $egin{aligned} H(\underline{m}) &= \langle \, z_1, \dots, z_r \; | z_1^{m_1} = \dots = z_r^{m_r} = \dots \ & z_1 \cdot z_2 \cdots z_r = 1 \,
angle \end{aligned}$

where $\underline{m} := (m_1, \ldots, m_r)$ is a finite sequence of integers satisfying $m_i \geq 2$.

• Let

$$\mu(\underline{m})\!:=\sum_{i=1}^r(1-rac{1}{m_i}).$$

Then

 $egin{aligned} H(\underline{m}) & ext{is finite} & \Leftrightarrow \mu(\underline{m}) < 2, \ H(\underline{m}) & ext{is Bieberbach} & \Leftrightarrow \mu(\underline{m}) = 2, \ H(\underline{m}) & ext{is Fuchsian} & \Leftrightarrow \mu(\underline{m}) > 2. \end{aligned}$

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –

§2 Hurwitz spaces

Definition. • Let $H(\underline{m})$ be a Hurwitz group, let G be a finite group and let C_1, \ldots, C_r be G-conjugacy classes with $g \in C_i$ of order m_i . Let $\underline{C} := (C_1, \ldots, C_r)$ denote the ordered sequence of G-conjugacy classes. The set of group homomorphisms

$$\mathcal{H}(G, \underline{\mathcal{C}}) := \{ \phi \colon H(\underline{m}) \to G \mid \ \phi \text{ surjective and } \phi(z_i) \in \mathcal{C}_i \}$$

is called the Hurwitz space of (G, \underline{C}) . Put

$$[\phi]$$
 := $(\phi(z_1), \ldots, \phi(z_r)).$

 Composition with inner automorphisms of G yields a left action of Inn(G) on H(G, C). The orbit space

$$\mathcal{H}^{\mathrm{inn}}(G,\underline{\mathcal{C}}) \colon = \mathrm{Inn}(G) \setminus \mathcal{H}(G,\underline{\mathcal{C}})$$

is called the inner Hurwitz space of (G, \underline{C}) .

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

§3.1 Circular braid groups

Definition. • The (abstract) circular braid group Ω_r is the group generated by elements Q_1, \ldots, Q_r with subject to the relations

 $egin{aligned} Q_iQ_j &= Q_jQ_i & ext{ for } i-j
ot\equiv \pm 1 \mod r, \ Q_iQ_jQ_i &= Q_jQ_iQ_j & ext{ for } i-j \equiv \pm 1 \mod r. \end{aligned}$

• $s: Q_i \rightarrow Q_{i+1}$ is an automorphism of Ω_r . The group

$$ilde{\Omega}_r = \langle s
angle \ltimes \Omega_r$$

will be called the extended circular braid group.

 It is still an open problem whether the abstract circular braid group coincides with the geometric circular braid group.

§3.2 The action of the circular braid group

• Let G be a group and

 $S_r(G)$: = { $(g_1, \ldots, g_r) \in G^r \mid g_1 \cdots g_r = 1$ }.

The assignment

$$egin{aligned} &(g_1,\ldots,g_r).Q_i\colon=\ &(g_1,\ldots,g_{i-1},g_{i+1},g_{i+1}^{-1}g_ig_{i+1},g_{i+2},\ldots,g_r)\ &(g_1,\ldots,g_r).Q_r\colon=(g_1^{-1}g_rg_1,g_2,\ldots,g_{r-1},g_1),\ &(g_1,\ldots,g_r).s\colon=(g_2,\ldots,g_r,g_1). \end{aligned}$$

defines a right action of $\tilde{\Omega}_r$ on $S_r(G)$ which commutes with the action of Inn(G).

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

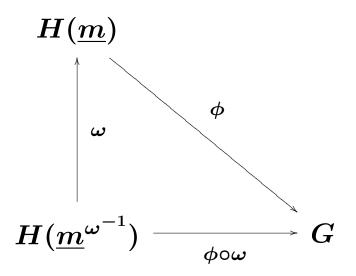
§3.3 Reduced Hurwitz spaces

• Put
$$\mathcal{H}(G, \underline{\mathcal{C}}^*)$$
: = $\bigsqcup_{\sigma \in S_r} \mathcal{H}(G, \underline{\mathcal{C}}^\sigma)$. Then

$$\mathcal{H}^{\mathrm{red}}(G,\underline{\mathcal{C}}^*) := \mathcal{H}(G,\underline{\mathcal{C}}^*)/\tilde{\Omega}_r,$$

is called the **reduced Hurwitz space** of (G, \underline{C}) .

- $\mathcal{H}^{\mathrm{red}}(G, \underline{\mathcal{C}}^*) = \mathcal{H}^{\mathrm{red}, \mathrm{inn}}(G, \underline{\mathcal{C}}^*)$ in M.D.Fried's notation.
- Let $\phi \in \mathcal{H}(G, \underline{\mathcal{C}})$, $\omega \in \tilde{\Omega}_r$. Then



– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

§4 Profinite Hurwitz groups

Let p be a prime number which is coprime to $N(\underline{m}) := m_1 \cdots m_r$. Let

$$\iota \colon H(\underline{m}) \longrightarrow \hat{H}(\underline{m})$$

denote the profinite completion of the Hurwitz group $H(\underline{m})$.

- Every homomorphism $\phi: H(\underline{m}) \to G$ onto a finite group G extends in a unique way to a homomorphism $\hat{\phi}: \hat{H}(\underline{m}) \to G$.
- $\hat{H}(\underline{m})$ is a *p*-perfect group, i.e.,

$$\operatorname{Hom}(\hat{H}(\underline{m}), \mathbb{F}_p) = 0.$$

• [W] The profinite group $\hat{H}(\underline{m})$ is an orientable *p*-Poincaré duality group of dimension 2.

– Typeset by FoilT $_{\!E\!} \! \mathrm{X}$ –

§5 P-projective profinite groups

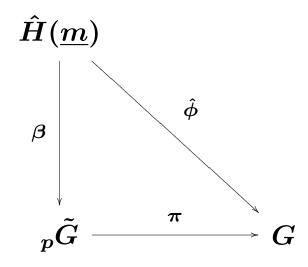
Theorem. (W.Gaschütz; Cossey, O.H.Kegel & L.Kovacs; M.D.Fried & Ershov; M.D.Fried & M.Jarden; et al.) Every (pro)finite group G has a universal p-Frattini cover $\pi: {}_{p}\tilde{G} \to G$. It coincides with the minimal p-projective cover.

Theorem. (K.W.Gruenberg) Let \hat{G} be a profinite group. Then

 $\operatorname{cd}_p(\hat{G}) \leq 1 \Leftrightarrow \hat{G}$ is *p*-projective.

$\S 6$ Cusp branches

Definition. One says that the Hurwitz element $\phi \in \mathcal{H}(G, \underline{C})$ has a cusp branch, if there exists a mapping $\beta \colon \hat{H}(\underline{m}) \to {}_{p}\tilde{G}$ making the diagram



commute. The mapping β is necessarily surjective.

• Question: Is it possible to characterize Hurwitz elements which have a cusp branch?

§7.1 Harbater-Mumford elements

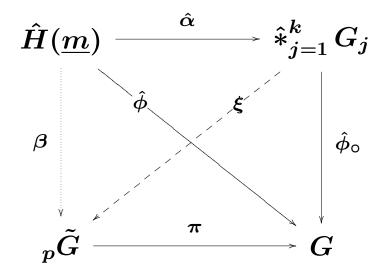
Definition. The element $\phi \in \mathcal{H}(G, \underline{C})$ is called a **Harbater-Mumford element**, if there exists $\omega \in \tilde{\Omega}_r$ such that $[\phi \circ \omega] = (g_1, \ldots, g_r)$ has the following property: There exists i_1, \ldots, i_k , $k \ge 2$, such that for all $j = 1, \ldots, k$

• $G_j := \langle \, g_{i_{j-1}+1}, \ldots, g_{i_j} \,
angle \leq G$ is a p'-group,

•
$$g_{i_{j-1}+1}\cdots g_{i_j}=1$$
.

§7.1 Harbater-Mumford elements (cont.)

One has a commutative diagram



• by hypothesis
$$\hat{\phi} = \hat{\phi}_{\circ} \circ \hat{lpha}$$
,

- ${}_{p} ilde{G}$ p-projective \Rightarrow ${m \xi}$ exists,
- $\beta = \xi \circ \hat{\alpha}$.

Thus, ϕ has a cusp branch.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

§8.1 Good reduction (g-p'-cusps)

Definition. $\phi \in \mathcal{H}(G, \underline{C})$ is called **strongly** reducible, if exists an element $\omega \in \tilde{\Omega}_r$ such that for $[\phi \circ \omega] = (g_1, \dots, g_r)$ there exists i_1, \dots, i_k , $k \ge 2$, such that

- $G_j := \langle g_{i_{j-1}+1}, \ldots, g_{i_j} \rangle$ are finite p'-groups.
- Let $y_j := g_{i_{j-1}+1} \cdots g_{i_j} \in G_j$, and put

$$K := \langle G_j \mid y_1 \cdots y_k = 1 \rangle.$$

- Let Y := ⟨ y₁,..., y_k ⟩ ≤ G, and let C'_j denote the Y-conjugacy class of Y containing y_j.
- Let $n_j := \operatorname{ord}(y_j)$, and $\underline{n} := (n_1, \ldots, n_k)$. Then

$$\psi \colon H(\underline{n}) \longrightarrow Y \in \mathcal{H}(Y, \underline{\mathcal{C}}'.)$$

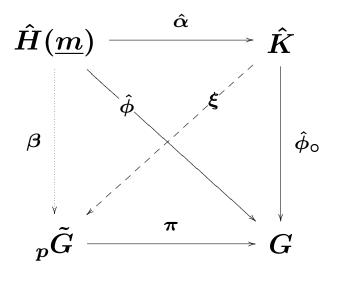
– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

§8.1 Good reduction (cont.)

Theorem. (*M.D.Fried*)

 $\phi \in \mathcal{H}(G, \underline{\mathcal{C}})$ has a cusp branch $\Leftrightarrow \psi \in \mathcal{H}(Y, \underline{\mathcal{C}}')$ has a cusp branch.

Consider



Then:

 $\exists \beta \Leftrightarrow \exists \xi.$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

§8.2 Bad reduction (o-p'-cusps)

Definition. $\phi \in \mathcal{H}(G, \underline{C})$ is called **weakly reducible**, if there exists an element $\omega \in \tilde{\Omega}_r$ such that for $[\phi \circ \omega] = (g_1, \dots, g_r)$ there exists i_1, \dots, i_k , $k \ge 2$, such that

- $y_j := g_{i_{j-1}+1} \cdots g_{i_j}$ are elements of p'-order.
- Let $s_i := \operatorname{ord}(g_i)$, $t_j := \operatorname{ord}(y_j)$ and put $\underline{s}^* := (s_{i_{j-1}+1}, \ldots, s_{i_j}, t_j)$, $\underline{t} := (t_1, \ldots, t_k)$.

• Let

$$egin{aligned} Y_j\! :=& \langle \, g_{i_{j-1}+1},\ldots,g_{i_j}\,
angle, \ Y^*\! :=& \langle y_1,\ldots,y_k
angle. \end{aligned}$$

• Hence for such an element one has k + 1 Hurwitz elements

$$\psi_j \colon H(\underline{s}^*) \longrightarrow Y_j, \ 1 \leq j \leq k$$
, $\psi^* \colon H(\underline{t}) \longrightarrow Y^*.$

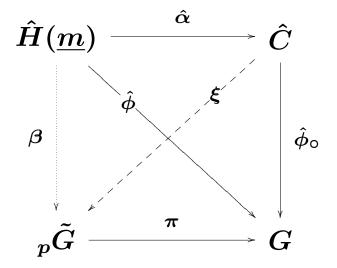
– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

§8.2 Bad reduction (cont.)

Theorem. (M.D.Fried) Assume that ψ^* and ψ_j have cusp branches for all $j \in \{1, ..., k\}$. Then ϕ has a branch cusp.

• \Leftarrow is wrong: Let

$$C\!:=\!\langle\,g_1,..,g_r,y_1,..,y_k\mid g_i^{m_i}=y_j^{t_j}=\ g_{i_{j-1}+1}\cdots g_{i_j}y_j^{-1}=y_1\cdots y_k=1
angle,$$



The existence of ξ implies the existence of β but not vice versa.

§9 M.D.Fried's conjecture

Conjecture 1. (*M.D.Fried*¹) $\phi \in \mathcal{H}(G, \underline{C})$ weakly reducible $\Rightarrow \phi$ strongly reducible (r = 4).

Conjecture 2. ϕ has a cusp branch $\Rightarrow \phi$ is strongly reducible.

Conjecture 3. Let $\phi: \hat{H}(\underline{m}) \to {}_{p}\tilde{G}$ be a continuous homomorphism of profinite groups such that

- $\underline{m} = (m_1, m_2, m_3)$, $(\hat{H}(\underline{m})$ is a profinite triangle group),
- $(p, m_1 m_2 m_3) = 1$.

Then $im(\phi)$ is finite.

¹During the meeting I learnt through conversations with Mike Fried and Darren Semmen, that Conjecture 3 **cannot** hold in this form. Indeed, on the last day of the meeting Darren and me, we constructed morphism onto profinite Frobenius groups which violate Conjecture 3, and therefore Conjecture 1 and 2 for r = 3. However, it might be possible, that some version of these conjectures (with additional hypothesis) is true.)

$\S10$ A test case

Theorem. (Stallings; Swan) Let \tilde{F} be a (discrete) group. Then

$$\operatorname{vcd}(ilde{F}) \leq 1 \Leftrightarrow ilde{F}$$
 is virtually free.

Theorem. (J-P.Serre) Let $a, b, c \in \tilde{F}$ be elements of finite order in the finitely generated virtually free group \tilde{F} satisfying $a \cdot b \cdot c = 1$. Then $\langle a, b, c \rangle$ is finite.

Theorem. (W.) Let $\underline{g} = (g_1, \ldots, g_r)$ be a sequence of elements of finite order in the finitely generated virtually free group \tilde{F} satisfying

$$g_1 \cdots g_r = 1.$$

Then there exists an element in the extended circular braid group $\omega \in \tilde{\Omega}_r$ such that

$$\langle (\underline{g}.\omega)_1, (\underline{g}.\omega)_2
angle$$

is a finite group.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

\$11.1 P-projective profinite groups and \mathbb{Z}_p -trees

Theorem. (W.) Let \hat{G} be a finitely generated pprojective virtual pro-p group. Then \hat{G} has an action on a \mathbb{Z}_p -tree \hat{T} with the following properties:

- (i) \hat{G} is acting without inversion of edges,
- (ii) every vertex and every edge stabilizer is a (finite)
 p'-group,
- (iii) every (finite) subgroup of \hat{G} of p'-order fixes a vertex,
- (iv) the vertex group $\mathbf{V}(\hat{T})$ and the edge group $\mathbf{E}(\hat{T})$ are *p*-projective \hat{G} -modules.
 - If \hat{G} is a finitely generated virtual pro-p group acting on a \mathbb{Z}_p -tree \hat{T} such that (i), (ii) and (iv) are satisfied, then \hat{G} is p-projective.

§11.2 The difference to Bass-Serre

- There are finitely generated *p*-projective virtual pro *p* group *Ĝ* that can act on a Z_p-tree *Î*, such that (i), (ii), (iv) is satisfied, but (iii) fails.
- There are finitely generated *p*-projective virtual pro *p* groups *Ĝ* which cannot act with finitely many orbits on vertices and edges on a Z_p-tree *Î* satisfying (i) and (ii).
- Question: Assume that the finitely generated pprojective virtual pro-p group \hat{G} is acting on a \mathbb{Z}_p -tree such that (i), (ii), (iii) and (iv) are satisfied.
 Let $g \in \hat{G}$ be an element of p'-order. Is it true that \hat{T}^g is connected?

$\S11.3$ Boolean sets

- A **boolean (or profinite) set** is a compact totally disconnected Hausdorff space. Let **bool** denote the category of boolean sets.
- Let ab_p denote the category of abelian pro-p groups. The forgetful functor for: $ab_p \rightarrow bool$ has a left adjoint

 $\mathbb{Z}_p[\![-]\!]$: bool \longrightarrow ab_p.

§11.4 What is a \mathbb{Z}_p -tree?

- A profinite graph Γ̂ is the collection of a boolean set 𝔅(Γ̂), the vertices, a boolean set 𝔅(Γ̂), the edges, an origin mapping o: 𝔅(Γ̂) → 𝔅(Γ̂), a terminus mapping t: 𝔅(Γ̂) → 𝔅(Γ̂) and an inversion mapping Ξ: 𝔅(Γ̂) → 𝔅(Γ̂) satisfying the usual identities. (All mappings are mappings in bool).
- One puts

$$egin{aligned} \mathrm{V}(\hat{\Gamma}) &:= \mathbb{Z}_p \llbracket \mathfrak{V}(\hat{\Gamma})
brace, \ \mathrm{E}(\hat{\Gamma}) &:= \mathbb{Z}_p \llbracket \mathfrak{E}(\hat{\Gamma}
brace / \langle \, \mathrm{e} + ar{\mathrm{e}} \mid \mathrm{e} \in \mathfrak{E}(\hat{\Gamma}) \,
angle. \end{aligned}$$

Then $\partial: \mathbf{E}(\hat{\Gamma}) \to \mathbf{V}(\hat{\Gamma}), \ \partial(\mathbf{e}) := t(\mathbf{e}) - o(\mathbf{e})$, is a morphism of abelian pro-p groups.

The profinite graph Γ̂ is called Z_p-connected, if coker(∂) ≃ Z_p, and a Z_p-tree, if it is connected and ker(∂) = 0.

– Typeset by FoilT $_{\!E\!} \! \mathrm{X}$ –

§12 Generalized Fuchsian groups

Definition. A geodesic space (X, d) with a nonempty subset \mathfrak{P} of closed subspaces satisfying

- $(P,d)\simeq \mathbb{H}^2$ or \mathbb{R}^2 for $P\in \mathfrak{P}$,
- for $P,Q\in \mathfrak{P}$, P
 eq Q, one has $|P\cap Q|\leq 1$,
- for all $x\in X$, $|\{P\in\mathfrak{P}\mid x\in P\}|<\infty$,

will be called a geodesic plane arrangement.

Definition. A (discrete) group G is called a generalized Fuchsian group, if it has a faithful, discontinuous and co-compact action on a contractible geodesic plane arrangement (X, d, \mathfrak{P}) , such that G_P acts co-compactly on P for all $P \in \mathfrak{P}$.

§12 Generalized Fuchsian groups (cont.)

Proposition. The group K of $\S 8.1$ is (in general) a generalized Fuchsian group, C of $\S 8.2$ is not.

Proposition. Let G be a generalized Fuchsian group acting on the geodesic plane arrangement (X, d, \mathfrak{P}) . Then X is an $E_{\mathfrak{F}}G$ of G. In particular, $cd_{\mathfrak{F}}(G) = 2$.