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§1 Hurwitz groups

Definition. e A Hurwitz group H(m) (of signa-
ture m) is a group with presentation

H(m) = (215ecey2p |27t = =27 = ...

zl.ZZ...zr:1>

where m: = (my,...,m,) is a finite sequence of
integers satisfying m; > 2.

o let

Then

H (m) is finite < p(m) < 2,
H (m) is Bieberbach & p(m) = 2,
H (m) is Fuchsian & p(m) > 2.
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§2 Hurwitz spaces

Definition. e Let H(m) be a Hurwitz group, let
G be a finite group and let C1,...,C, be G-
conjugacy classes with g € C; of order m;. Let
C:=(Cyy...,C,) denote the ordered sequence
of G-conjugacy classes. The set of group homo-
morphisms

H(G,C): ={¢: Him) — G |
¢ surjective and ¢(z;) € C; }

is called the Hurwitz space of (G,C). Put

[¢] . = (¢(zl)9 ooy ¢(zr))

e Composition with inner automorphisms of G yields
a left action of Inn(G) on H(G,C). The orbit
space

H"™(G,C): = Inn(G) \ H(G,C)

is called the inner Hurwitz space of (G,C).

— Typeset by Foil TEX — 2



§3.1 Circular braid groups

Definition. e The (abstract) circular braid group
(2, is the group generated by elements QQ1, ..., Q)
with subject to the relations

Q:iQ; = Q;Q; for 1+ — 3 % +1 mod r,
Q:Q;Q: = Q;Q;Q; for 1 —j ==x1 mod r.

e s: Q; — Q;11 Is an automorphism of .. The

group 3
Q, = (s) x Q,

will be called the extended circular braid group.

e |t is still an open problem whether the abstract
circular braid group coincides with the geometric
circular braid group.
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§3.2 The action of the circular braid
group

e Let G be a group and

S’P(G)::{(glwﬂagr)EGrlgl"’gr:]-}'

The assignment

(gla R 79'r)'Qz’3 —
(1s- -2 Gia15Git1s 95119iFi+1s Git2s - - -+ Ir)

(gla s ooy gr)'QT: — (gl_lg’rglv g2y.ccsgr—1, gl)a
(gla o« agr)-S: — (927 cee9gr, gl)-

defines a right action of €, on S,(G) which
commutes with the action of Inn(G).
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§3.3 Reduced Hurwitz spaces

o Put H(G,C"): =|],cs. H(G,C?). Then
Hred(Gv Q*) — H(Ga g*)/ﬁra
is called the reduced Hurwitz space of (G,C).

o H™(G,C*) = H*H(G,C*) in M.D.Fried's

notation.

e Let ¢ € H(G,C), w € Q,. Then

H(m)
b
H (m“’_l) ou G
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84 Profinite Hurwitz groups

Let p be a prime number which is coprime to
N(m): =my---m,. Let

v: H(m) — H(m)

denote the profinite completion of the Hurwitz group

e Every homomorphism ¢: H(m) — G onto a
finite group G extends in a unique way to a
homomorphism ¢: H(m) — G.

o I:I(m) is a p-perfect group, i.e.,

Hom (H (m),F,) = 0.

e [W] The profinite group H(m) is an orientable
p-Poincaré duality group of dimension 2.
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3b P-projective profinite groups

Theorem. (W.Gaschiitz; Cossey, O.H.Kegel &
L.Kovacs;, M.D.Fried & Ershov; M.D.Fried &
M.Jarden; et al.) Every (pro)finite group G has a
universal p-Frattini cover m: ,G — G. It coincides
with the minimal p-projective cover.

Theorem. (K.W.Gruenberg) Let G be a profinite
group. Then

cdp(é) <1< G is p-projective.
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§6 Cusp branches

Definition. One says that the Hurwitz element
® € H(G,C) has a cusp branch, if there exists a
mapping B: H(m) — G making the diagram

H(m)

»G G
commute. The mapping (3 is necessarily surjective.

e Question: Is it possible to characterize Hurwitz
elements which have a cusp branch?
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§7.1 Harbater-Mumford elements

Definition. The element ¢ € H(G,C) is called a
Harbater-Mumford element, if there exists w € (2,

such that [¢ o w] = (g1,...,9r) has the following
property: There exists i1,...,1,, k > 2, such that for

all j=1,... .k
e Gj:=(Gi,_,+15--+,9:i;) < G is a p'-group,

o gij_1—|—1 te g'LJ = 1.
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§7.1 Harbater-Mumford elements (cont.)

One has a commutative diagram

H(m)

e by hypothesis qAS = $O o &,
o pé p-projective = £ exists,
o /6 — € o .

Thus, ¢ has a cusp branch.
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§8.1 Good reduction (g-p’-cusps)

Definition. ¢ € H(G,C) is called strongly
reducible, /f exists an element w € flr such that for
[ o w] = (g15.-.59r) there exists iy, ..., ik, k > 2,
such that

e Gj: = (gi;_,+15--+5Gi; ) are finite p'-groups.
e Let yj: =gi;_,+1---9i; € Gy, and put

K:=(Gj |y -y =1).

e let Y:=(y1,...,yr) < G, and let C;. denote
the Y'-conjugacy class of Y containing y;.

o Let n;: =ord(y;), and n:= (ngy,...,Nng).
Then

Y: Hn) — Y € H(Y,C'.)
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§8.1 Good reduction (cont.)

Theorem. (M.D.Fried)

¢ € H(G,C)has a cusp branch
& 1) € H(Y,C )has a cusp branch.

Consider

Then:

38 < 3¢.
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§8.2 Bad reduction (o-p’-cusps)

Definition. ¢ € H(G, C) is called weakly reducible,
iIf there exists an element w € flr such that for
(¢ o w] = (g15...49r) there exists i1, ... 1k, k > 2,

such that

® Yji=Gi;_,41°°*gi; are elements of p’-order.

o Let s;: =ord(g;), t;:=ord(y;) and put

%

s8*: = (sij_1+1,. . .,sij,tj), t: = (t15...,1t8).

o Let
Y;: :<gij_1—|—19 = e+ 9Gi; )s

Y =(yr,-- -, Uk)-

e Hence for such an element one has k£ + 1 Hurwitz
elements

Y;: H(s®) — Y;, 1 <j <k,
Y*: H(t) — Y™
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§8.2 Bad reduction (cont.)

Theorem. (M.D.Fried) Assume that ¢* and 1; have
cusp branches for all 5 € {1,..,k}. Then ¢ has a
branch cusp.

e < is wrong: Let

. t.
C: :<gla cos grs Y19 o9 Yk | g;{nz — ng —
1
Gij_1+1°°°9i;¥; = Y1+ Yp = 1),

H(m) C

The existence of & implies the existence of (3 but
not vice versa.
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89 M.D.Fried’s conjecture

Conjecture 1. (M.D.Fried") ¢ € H(G,C) weakly
reducible = ¢ strongly reducible (r = 4).

Conjecture 2. ¢ has a cusp branch = ¢ is
strongly reducible.

Conjecture 3. Let¢p: H(m) — ,G be a continuous
homomorphism of profinite groups such that

e m = (mq, ma, ms3), (H(m) is a profinite triangle
group),

¢ (p,mymams) = 1.

Then im(¢) is finite.

1During the meeting | learnt through conversations with Mike Fried and
Darren Semmen, that Conjecture 3 cannot hold in this form. Indeed,
on the last day of the meeting Darren and me, we constructed morphism
onto profinite Frobenius groups which violate Conjecture 3, and therefore
Conjecture 1 and 2 for » = 3. However, it might be possible, that some
version of these conjectures (with additional hypothesis) is true.)
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8§10 A test case

Theorem. (Stallings; Swan) Let F be a (discrete)
group. Then

ved(F) < 1 < F is virtually free.

Theorem. (J-P.Serre) Let a,b,c € F be elements
of finite order in the finitely generated virtually free
group F satisfying a -b-c=1. Then {a,b,c) is
finite.

Theorem. (W.)Letg = (g1,...,9r) be asequence

of elements of finite order in the finitely generated
virtually free group F' satisfying

gi---gr = 1.

Then there exists~an element in the extended circular
braid group w € Q,. such that

{((g-w)1, (g-w)2)
Is a finite group.
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§11.1 P-projective profinite groups and
L-trees

Theorem. (W.) Let G be a finitely generated p-
projective virt}lal pro-p group. Then GG has an action
on a Zp-tree T' with the following properties:

(i) G is acting without inversion of edges,

(ii) every vertex and every edge stabilizer is a (finite)
p’-group,

(iii) every (finite) subgroup of G of p’-order fixes a
vertex,

(iv) the vertex groupAV(T) and the edge group E(T)

are p-projective G-modules.

o IfGisa finitely generated virtual pro-p group acting
on a Zy-tree T such that (i), (i) and (iv) are
satisfied, then GG is p-projective.
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§11.2 The difference to Bass-Serre

e There are finitely generated p-projective virtual pro-
p group G that can act on a Z,-tree T', such that

(i), (ii), (iv) is satisfied, but (iii) fails.

e There are finitely generated p-projective virtual pro-
p groups G which cannot act with finitely many
orbits on vertices and edges on a Z,-tree T' satisfying

(i) and (ii).

e Question: Assume that the finitely generated p-
projective virtual pro-p group G is acting on a
Z.,-tree such that (i), (ii), (iii) and (iv) are satisfied.
Let g € G be an element of p’-order. Is it true that
T9 is connected?
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§11.3 Boolean sets

e A boolean (or profinite) set is a compact totally
disconnected Hausdorff space. Let bool denote the
category of boolean sets.

e Let ab, denote the category of abelian pro-p groups.
The forgetful functor for: ab, — bool has a left
adjoint

Zp[-]: bool — ab,,.
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§11.4 What is a Z,-tree?

o A profinite graph [ is the collection of a boolean
set Y(I), the vertices, a boolean set &(I'), the
edges, an origin mapping o: QE(F) — (D),
a terminus mapping ¢: E(I') — B(I') and an
inversion mapping ~: ¢(I') — &(I) satisfying the
usual identities. (All mappings are mappings in
bool).

e One puts

V(D) : =Z, [ ()],
E(I): =Z,[&(T]/(e+&|e € &)).

Then 9: E(I') — V(I), d(e): = t(e) — o(e), is a
morphism of abelian pro-p groups.

e The profinite graph T is called Zp-connected, if

coker(9) ~ Z,, and a Z,-tree, if it is connected
and ker(9) = 0.
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§12 Generalized Fuchsian groups

Definition. A geodesic space (X,d) with a non-
empty subset B of closed subspaces satisfying

o (P,d) ~ H? or R? for P € ‘R,
o for P,Q € B, P #Q, onehas | PN Q| <1,

o forallx € X, [{P €B|x € P} < o0,

will be called a geodesic plane arrangement.

Definition. A (discrete) group G is called a
generalized Fuchsian group, f it has a
faithful, discontinuous and co-compact action
on a contractible geodesic plane arrangement
(X,d,*B), such that Gp acts co-compactly on P
for all P € *B3 .

— Typeset by Foil TEX — 21



§12 Generalized Fuchsian groups (cont.)

Proposition. The group K of §8.1 is (in general) a
generalized Fuchsian group, C' of §8.2 is not.

Proposition. Let G be a generalized Fuchsian group
acting on the geodesic plane arrangement (X,d,R).
Then X is an E;G of G. In particular, cdz(G) = 2.
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